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SIMULATION OUTPUT ANALYSIS FOR
GENERAL STATE SPACE MARKOV CHAINS

by

Peter W. Glynn and Donald L. Iglehart

Stanford University

1. Introduction

The statistical analysis of simulation output has been the primary focus

of recent research in simulation methodology. Methods have been developed

which permit the simulator to construct confidence intervals for steady-state

characteristics of the system being simulated. The principal methods in

current use are autoregressive modeling, batch means, regenerative, and

replication. With the exception of the replication method, all methods are

based on just one simulation run. These methods for constructing confidence

intervals are all based on central limit theorems for the underlying stochastic

processes being simulated. Thus all methods are only valid asymptotically

for long simulation runs.

In this paper we discuss three new methods for analyzing simulation

output. All three methods are aimed at analyzing the simulation output of

general state space Markov chains. This class of processes encompasses the

embedded jump chain generated by a generalized semi-Markov process (GSMP).

GSMP's are important for simulation since they may be used to model a general

discrete event simulation. GSMP's have been discussed in recent papers Dy

FOSSETT (1979), HORDIJK and SCHASSBERGER (1981), and WHITT (1980).

The first method, called the extended regenerative method (ERM), is based

on some recent work on general state space Markov chains by ATHREYA and NEY

(1978) and NTM!ELIN (1978). This method involves a construction which creates
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regeneration points for Markov chains which do not hit a single point infinitely

often. While this idea is very attractive in principle, there are a number

of practical considerations which limit its application. However, the

method can be used to increase the rate of regeneration points when using

the standard regenerative method. For more details on chis method and some

related results see GLYNN (1981).

The second method, called the random blocking method (REM), is based on

blocks of the process which begin when the process enters a giqen set in

the state space. This method is reminiscent of the regenerative method except

the blocks created here are not independent and identically distributed.

Details on this second method can be found in a forthcoming paper by GLYNN

(1981).

The last method is a variation of the method of autoregressive modeling.

This method, the multivariate autoregressive method (MARM), fits a multi-

variate autoregressive model to the simulation output data. The model fitting

is done automatically based on Akaike's AIC-criterion; see AKAIKE (1976) for

a full discussion of these criterion. A forthcoming paper by JOW (1981) will

develop this method and other related methods for simulation applications.

This paper is organized as follows. Section 2 is denoted to a discussion

of GSMP's and their relation to simulation. The ERM is covered in Section 3

and RBM in Section 4. Section 5 is devoted to the MARM and Sect an

illustrative example
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2. Generalized Semi-Markov Processes

In a discrete-event simulation a finite number of events occurring at

random times cause changes in the state of the system being simulated. The

number of events active at any given time is a function of the state of the

system. This type of simulation is well modeled by the generalized semi-

Markov process (GSMP) which we now describe.

Let S be the finite (or countable) set of states which describes the

GSMP at the successive transition epochs and G the finite number of events

which can cause a transition. If G = {ei , e2, .... em 
}, then we let

G(s) = {e1 (s), ..., en (s)} denote the subset of events active when the GSMP
s

is in state s. For each event active in state s, associate a clock which

records the time until that event would trigger a state change. If in

state s, the clock (associated with an event in G(s)) with the minimal

reading triggers the next state change when it runs down to zero. Let C(s)

denote the possible clock readings when the GSMP is in state s:

C(s) = {c EIR : ci > 0 iff ei E G(s); ci 0 c. for i 0 j}
3

where ]Rm is the Cartesian product of m copies of [0,-). Next define the

space Z by

Z = U ({s} x C(s))

sES

and the process (S,C) = {(S , C n n > 0} which lives on Z and represents

the state values and clock readings at the successive transition epochs. The
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process (S,C) is a general state space Markov chain whose transition kernel

will be defined in Section 3. Finally, the GSMP is a piece-wise constant

process, {X : t > 0}, constructed from the embedded jump process (S,C) in
t -

the usual manner.

3. The Extended Regenerative Method for GSSMC's

We start by formalizing the notion of a general state space Markov c'iain

(GSSMC). Let E be a complete, separable metric space with E its associated

Borel field. A function P : E x E - [0,11 is called a probability transition

kernel if:

i) P(x,') is a probability on (E,E) for each x in E,

ii) P(.,B) is E-measurable for all B E E.

One should think of P(x,B) as representing the one-step transition probability

of the chain passing from x into B. The analogous n-step transition prob-

abilities are then given through the Chapman-Kolmogorov equations, namely

p n+(x,B) = f pn(yB) P(x,dy)
E

where, of course, P (x,B) -5 x(B) (6 x(B) is 1 or 0 depending on whether

or not x E B). Given a kernel P and an initial probability p. on

(E,E), one can construct a measure P on (2,F) = (E x E x ., E x E x ...

such that

P {x 0 E B0 X1 E B1, ... Xn E B n

= f p(dx O) I P(x O, dx I ) f P(xn, dx)
B 0  B 1 B

0 1 n
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where X() M - and (w0' ca' ... ) is a typical element of 2. The

above constructicn yields a process {Xn  n > 1} that is endowed with the

Markov property

P {Xn+1 E BIXo, ..., Xn} p {X n+ E BIXn}

and is referred to as the GSSMC arsociated with kernel P and initial

distribution p.

EXAMPLE 3.1. Let E = fO, 1, ...} and put P(i,B) = XjEB pij, where P is

a stochastic matrix on E. This gives the classical countable state Markov

chain.

EXAMPLE 3.2. Let {W : n > 0} be the waiting time process of a GI/G/Iln

queue. Suppose that u and v are the interarrival and service r.v.'s

respectively, and that v-u has a density f(x). Then E = [0,-) and

x
P(x,B) f f(y-x)dy + 60(B ) f f(y)dy

B 0

EXAMPLE 3.3. Consider a model that imitates the dynamics of a lake. Let Si,

Z and Xi represent the volume of water stored in the lake, the inflow of

water, and outflow of water respectively, at time i. Then, the mass-balance

equation

(3.4) Si = Si_ 1 + zi - i

5



4

holds. If one now assumes that output increases linearly with storage through

the relation Xi = aSi (0 < a < 1), then (3.4) takes the form
i

Xi " Xii+%

where P = 1/(l+a) and ei = (aZi)/(l+a). Finally, the further assumption

that {i} is i.i.d. with

P{Ei E B} = p60 (B) + (l-p) I f(y)dy
B

yields a Markov chain model for the outflows {X }, where E = [0,-) andn

P(x,B) p6Ox (B) + (l-p) f f(y-px)dy

B

EXAIMPLE 3.5. The embedded jump process (S,C) introduced in Section 2 is a

GSSMC on state space Z and with kernel

P((s,c), B)

p(s'; s,i*) H f f(y; s',i,s,i*)dy H 5c*(B.)
i ENs, Bi  j EO,

where B is that subset of Z corresponding to the GSMP entering state s'

with the i'th clock of s' set to a value in B.

The numbers p(s'; s,i*) govern state transitions of the GSM? and represent

the probability of a jump to s' from s, given that clock i* initiated

the jump. The rest of the kernel governs clock readings. Those clocks

i E N (new clocks) are set stochastically according to a density

6



f(y; s',i,s,i*), whereas those clocks j E Os, (old clocks) are inherited from

the previous state and so must be set deterministically at the previous value

j*
c.

Note thaL by setting tn = c (i*(C1)) + - + Cn(i*(Cn)) (cW(k) is the

value of the k'th clock at the j'th jump of X t). We can retrieve

{Xt : t > 0}, the GSMP, from {(S n,C n) n> O} via

00

Xt M = 6t([ k , tk+l)) Sk
k-O

Let us turn now to a recurrence condition for GSSMC's first formulated

by ATHREYA and NEY (1978) and NUIMELIN (1978). We say that {Xn : n > 0}

is (A,B,X,(p,k) recurrent if there exist A, B E E, a positive number X,

an integer k, and a probability (p on B, such that:

i) P{1O 6 (A) - +-IX . x} - 1 for all x in E,
n

ii) P k(x,E) > Xip(E) for each x in A and measurable subset E of B.

In our setting, this recurrence notion is in fact equivalent to one first

proposed by HARRIS (1956).

To gain some appreciation for the significance of these conditions, we

observe that in the (A,B,Xp,l) case, we can decompose P over A as

P(x,E) = )p(E) + (1-X) Q(x,E)

where Q(x,.) is a probability on (E,E). The key idea of Athreya, Ney and

Nummelin was to exploit this decomposition via the following embedding.

Let E' = E x {0,1} and E' be the associated product a-field. We

extend P to a kernel P' on (E',E') by setting
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(1-X) P(x,E), x f A

((l-X) Q(x,E), x E A

(XP(x,E), x f A
P'((x,6), E x {i}) = ( E ), x A

(Efl B), xE A

For a probability p. on (E,E), define 4' on (E',E') by

'(E x {j}) - 5 0 (i) (l-X) p.(E) + 6 1 (i)X 4(E)

Then, it can be readily verified that the Markov chain X - (Xn 5n) on
n n n

(E',E') associated with P', t' has the property that the coordinate process

{Xn : n > 0} is the original GSSMC on (E,E) associated with P, p.

The importance of this embedding is that it furnishes one with a

sequence of regeneration times T defined in terms of X' via
k n

T= inf{n > 1 : Xn_1 E A, 5 n %

Tk = inf{n > Tk- 1 :X 1  A, 6n = 1} , k > .

The regenerative character of V guarantees "nice" ergodic behavior for
n

X n . For example, if we assume that E'(T 2-T1 ) < +, then the classical

regenerative theory shows that (e.g., SMITH (1955))

I nn k f(Xk) r E f(X) P, a.s.

nk=1 tt

where

8



T -1
2

Tr(B) =E'(C 6 X. (B)) /E' (T 2T 1 )
J=T1

Estimation of r is a common goal of simulators. The above discussion

suggests an "extended regenerative method" CERM) for producing confidence

intervals for r based on the T k sequence.

1. Generate the sequence {(X, &s ) n > 0}.

Tk+l
2. Let Y k f(X ), a k = T k+l ~Tk and form

j =T k

r (n) = C I YkJ/C ZX

k=l k~l

()=1 2 1 nOn11 _1 k n(n-) k I ~

k=l k=l l

s2(n) = s 1()- 2rn s 2 n + f..2 (n) s 2 2 (n)

3. To form a 100(1-6)% confidence interval for r choose z so that
5

C (z) 6 1 - /2, where 4) is the standard normal distribution function.

Then

z n)n1/2 z ~)n1/21
-r (n) n + 5 (n) n

k=lkl

is the desired confidence interval.
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The above steps can all be justified under the assumption that

0 < E(Y2 - ra2) 2( +-. Incidentally, although Step 1 appears to necessitate

the ability to generate deviates distributed according to Q(x,.), this

difficulty can be avoided by using an acceptance-rejection technique ([8), p. 57).

EXAMPLE 3.1 (continued). Suppose that X = {Xn  n > 0} is an irreducible,

recurrent Markov chain with transition matrix P = {pij}. Then, X is

({0}, E, 1, po.,l) recurrent and T = Nk+l, where N is the k'th hitting
0. kk k

time of 0. The ERM reduces here to the classical regenerative technique

(modulo a shift to the right).

EXAMPLE 3.2 (continued). Assuming that Ev < Eu, {W : n > 0} is ({0}, E, 1,-- n -

P(0,-), 1) recurrent, and again T = Nk+l, when N is the k'th hitting
kk k

time of 0, reducing our estimation technique to the usual one (again,

modulo a shift).

EXA&MPLE 3.3 (continued). Assuming that Esi < +- and that f is positive

and continuous over [0, +-), {X n : n 0} is (f0,b], E, X, p, 1) recurrent

where

w r(y) 
(l-p) min f(y- x)

k (y) dy; (p(y) =,(y) /X
0

Here the T ks form a subsequence of the hitting times of [O,b] -- this

reflects the fact that X returns to no point infinitely often. The ERMn

is applicable here, whereas the classical regenerative method is not.
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EXA,*PLE 3.5 (continued). We say that the GSMP has a single set if there

exists a state s' with which is associated only one clock. Then, given

that the GSMP hits {s'} infinitely often, (S,C) is (A, Z, 1, P((s',c), ), 1)

recurrent where A = {(s,c) E Z : s = s'}. Here, Tk = Nk+l where the Nk's

are consecutive hitting times of A.

It should be remarked that in the context of a GSMP, a simulator is

often interested in the continuous-time quantity

t

= lir f f(X )ds/t
t O S

This can be estimated by the ERM, provided that the definitions of Yk and

a k are modified to

Tk+l-1
Y k I f(S.) c.(i*(C.))

j =Tk  J *

jT -k
Tk+l-1

ak= E cj(i*(C.))
j=Tk

The above discussion focussed on (A, B, 1, , 1) GSSXC's. A fundamental

difficulty arises in the (A, B, X, (p, k) case, a difficulty that can be

partially circumvented via an embedding that endows the chain with an

environment that is "loosely regenerative" in the sense of SMITH (1955). An

estimation procedure can then be' developed that bears close resemblance

to the "extended regenerative method" outlined above (see 18]).

Before leaving this topic, it should be mentioned that a number of

difficulties remain in terms of implementation of the ERI. The most fundamental

problem is that the decomposition of P over A requires an explicit form

for the kernel over that set. The "event-scheduling" approach normally used



by simulators to generate sample paths does not require an explicit

representation for the kernel, and so a simulator is left with the burden-

some task of calculating such a form. Additional difficulties arise in

determining appropriate X, (, and A, although here simple numerical

techniques would be applicable ([8], p. 52).

4. Random Blocking Method for GSSMC's

Our major incentive in studying GSSMC's here has been in terms of

application to GSMP's. It turns out that GSMP's possessing no single set

cannot be (A, B, X, p, 1) recurrent ([8], p. 60), and hence the ERM

discussed in the previous section does not apply. This factor together

with the EPM-related difficulties already mentioned, motivates development

of other methods.

Suppose that {X : n > 0} is an (A, B, %, w, k) GSSMC with invariantn

probability v. This will in fact be the case for the embedded jump process

(S,C), corresponding to a GSMP {Xt : t > 0}, provided that (see [9])

i) the state space S is finite

ii) the "road map" p(s', s, i*) satisfies a natural irreducibility

condition (see [7], p. 16)

iii) the densities f('; s', i, s, i*) are positive and continuous

on [0,o), with finite mean.

For such an (A, B, X, p, k) recurrent {X n n > 0} one can show that
n

if Enlf(X)Il < +' , then

-- I f (Xk) r = E f(X) P a.s.
k=O

12



for any ± on (E,E). A simulator commonly wishes to obtain an estimate

for r, together with an associated confidence interval.

Let T, T2, ... be the consecutive hitting times of the set A. The

"random blocking method" (RBM) hinges on the observation, due essentially to

OREY (1959), that

Vk (XTk+l, XTk+2 , ..., X )Tk+

is a Doeblin recurrent Markov chain with a single ergodic set (see DOOB

(1953) for definitions and results). Under the assumption that Vk is

aperiodic (this will generally be the case for GSMP's), functions of Vk

will enjoy a central limit theorem with a variance constant of the form

00

(4.1) a 2 = a 2(Z 0 ) + 2 cov(Z0 , Zk)
k=l

By truncating the infinite sum and estimating the finite number of remaining

terms in the series by the standard sample moments, we obtain the RBM.

1. Choose a truncation number m (the number of covariance terms of

(4.1) to be retained).

2. Put Yk k=T f(Xj), a = Tk+l - Tk and form

n n

;(n) =C YO/C I a kk
k=l kk

2-. n- n

(n) (n) - rk Ika
- k + n- L --- kkl1

k=l k~l

13 " *



for 1 ..., m

2 m

s2 (n) =c 00(n) + 2 1 Cot(n)
Z=i

3. A 100(1-5)% confidence interval for v is

z. s(n)n 1/2 z 5  s(n)n
I/ 2 .

I [Ir(n)- n , r(n) + 2

k=l k--

Justification of the above steps is possible, provided that

S l2+5
f E{ 1 Zf(X) }n(dx) < +oc
A j=l

for some 5 > 0 ([91). The GSMP's, the RBM can be modified in the same way

as the ERM so as to provide confidence intervals for continuous-time quantities

of the form (3.5).

Observe that when m = 0, this technique reduces to the "approximate

regenerative method" (ARM) of CRANE and IGLEHART (1975). Hence one can think

of the RBM as a second-order refinement of the ARM. It should be noted,

however, that the R1M involves the undesirable element of having to make an

a priori judgment as to an appropriate value of the truncation index m.

This is a problem to which we intend to devote more attention.

14
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5. Multivariate Autoregressive Method

The last method we shall discuss is the multivariate autoregressive

method (MARM). Let {X : n > 0} be a vector-valued strictly stationary

process with mean vector L = E{XI} and covariance function Z(h)

= E{[X-I ] [X n-'}. Then under some regularity conditions (see BILLINGSLEY

(1968), Theorem 20.1) the following central limit theorem holds as n + :

)/n- f' X .40 N(O,Z)

30

where Z Z (0) + 2-n[il Z(h)"

To apply this result to simulation output analysis we need a method

to estimate the covariance matrix Z.

Let f(X) be the matrix-valued spectral density function for the

process {X : n > 0}, namely,
n

f(X) = Z(h) e real

Observe that Z - f(O). The function f can be approximated arbitrarily

closely by the corresponding spectral density of a multivariate autoregressive

(MAR) process fitted to the process {X n > 0}. To fit a MAR process of

order p we must find matrices {A: 0 < k p so that

k=O'Zkn-k =-.n

where the Z 's are i.i.d. normal with mean 0 and known convariance T. We select
-'4n

the order p of the MAR process by applying the AIC-criterion of AKAIKE (1976),

(19 ). Once the model is fitted, it is a simple computation to find the

15
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spectral density function of the MAR process. This function evaluated at

zero then provides our estimate for Z.

This method and related ones will be developed in detail in JOW (1981).

In Section 6 data will be presented from an application of the method to the

lake model. presented in Section 3.

6. Application to the Lake Model

In this section we illustrate the application of the three methods to

the lake model presented in EXAMPLE 2.. Recall the model is generated by

the recursion

Xn = PXn-l +  n n > 0

where the e 's are i.i.d. and , < 1. It can be shown that X - X as
n n

n - with E{X} = E{Z I = (1-) - E{eI}. For this simulation we have taken

the e 's to nave the distribution P{e n< x} = 1 - (l-o)e - x, x > 0, which

results in X being exponential with parameter 1. The simulations were

carried out to estimate E{X}. For the ERM the return set A = [O,b],

where b = (-log P)/(l-p). This value can be shown to maximize the expected

number of regenerations. The value o = 0.75 was used which makes b = 1.15.

For the RBM the return set A = [.75, 1.25]. The infinite sum of covariance

terms in the RBM was truncated at m (m = 0, 5, 10, 25). For the MARM the

vector of observations used was (X, X2 1- 1 ..(Xn) A total of 10,000n% n O[, ln 2]

observations were generated in each of 30 replications.
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Discrete events simulations can be modeled by generalized semi-Markov

processes (GSMP's). Our goal is to estimate characteristics of the

stationary distribution of a GSMP. A GSMP viewed at the embedded jump

points is a general state space Markov chain (GSSMC). The regenerative

method for denumerable state Markov chains does not apply since a GSSMC

in general does not hit a single state infinitely often. Three approaches

to this problem are discussed. The first is based on a recent con-

struction of regeneration times for GSSMC's developed by Athreya/Ney and

Nummelin. This construction can also be used to increase the frequency

of regeneration points for Markov chains with a denumerable state space.

The second approach decomposes the GSSMC at the hitting times of a

specified set. This decomposition leads to a Doeblin recurrent Markov

chain and an associated central limit theorem. The third approach

involves fitting multidimensional autoregressive and autoregressive -

moving average models to the GSSMC using the state space approach to

time series. An example to illustrate the three approaches is discussed.
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